Performanceand Functional Improvementsin
MPT Software for the Cray XT System

Mark Pagd, Howard Pritchard,
Kim McMahon, Alex Hilleary
Cray Inc.

ABSTRACT: Since the introduction of the Cray XT3, many performance improvements
have been made in the MPT and portals software stack especially for dual-core support.
Many of these are enabled by default but some require users to enable them. This paper
will discuss these optimizations and show the measured performance improvements. In
addition, key functional improvements will also be discussed. Planned MPT optimizations
and functional improvements will be presented as well, including those being planned for

Compute Node Linux.

KEYWORDS: MPI, SHMEM, dud-core, portals, catamount, Compute NodeLinux

1. Introduction

The software stack for Message Passing Toolkkit
(MPT) which contain the MPI and SHMEM libraries has
been enhanced over thelast year both in performance and
fundiondity. = Some of these improvements were
implemented in the MPI and SHMEM libraries and some
in the undelying software such as portals. This paper
will discuss some of these improvements and present
some measured improvements using the IMB/Pallas
benchmarks. In addition, severa features tha should
become available in the next year will also bediscussed.

2. Portals Improvements

The origind implementation for dud-core support
was supplied by Sandia Nationd Lab and is known as
Catamount Virtud Node or CVN. This implementation
used a master and dave processor paradigm for dud-core
support. Althoughinitial performance was reasonable,
for some applications changes were needed at the portals
layer to alow beter peaformance. Three of these
optimizationswere send-to-self short circuit optimization,
symmetric master/slave optimization and portals API
extensions.

Send-to-self short circuit optimization

This optimization uses a memory to memory copy for
mos messages of reasonable size when the source and
destination are on the same node. This reduces the latency
by eliminaing the round trip of the data to the SeaStar,
and then back into memory. For very large messages, the
daa still travels out to SeaStar and back to alow
additiond overlap of computation. In this case, the DMA
engine in the SeaStar is essentidly subdituting for the
Opteron based memcpy fundion. This change was added
tothe1.4.28and 1.5.07 XT releases.

Symmetric magder/dave optimization

The origind master/dave design of CVN had all
portals processing confined to core 0. This resolved a
variety of synchronization issues. The primary downsde
to it is tha this interferes with computation on core 0, as
well as adding latency by having al core 1 poras
opeations forwarded to core O for processing. This
optimization strives to reduce the latency impact by
performing mog all portals processing on the core tha
they were requested from. This means tha when the
process executing on core 1 issues the syscall to do a
portals PUT, the processing remainson core 1, al theway
throughthe request to the SeaStar. A single large portals

CUG 2007 Proceedings 1 of 6

lock maintains propea synchronization. Interrupts from
the SeaStar are still directed to core O for servicing.

This optimization is mog beneficia when core 1 is
doing communication, while core 0 is doing computation.
When both cores are actively doing communication, much
of the bendfit is log dueto lock contention, as well as
Opteron cache thrashing. This change was added in the
1.4.28and 1.5.07 XT releases.

Future work indudes finer grained locking under
CNL to reduce lock contention.

Portals APl extensions

This change extended the Portals APl by three new
entry points. These new fundions are called
PtIMEMDPog, PtIMEMDInsert, and PtIMEMDATttach.
All three of these fundions are essentially amalgams of
already existing Portals fundions The first of these
(PIMEMDPog) essentidly combines the actions of
PtIMEInsert, PtIMDAttach, and PtIMDUpdae. This
paticular sequence is used for poding an MPI receive.
The combinaion replaces three distinct system calls with
one thereby redudng the oveal cod. This change was
addedinthe1.4.28and 1.5.07 XT releases.

3. MPT improvements

Several MPT optimizations have been implemented
that should improve pefformance on user applications
Some of these have been enabled by default others get
enabled when an environment variable is set. One of the
optimizationstha have been enabled by default is the use
of PIMEMDPog mentioned above and was made
availableinthe1.4.28and 1.5.07 XT release.

Another default optimization has been improvements
to the SHMEM redudions and broadcast collectives
which show improvements of more than 40% over the
previous versons This optimization is in 1.4.30 and
1.5.09 versionsof the X T software.

It is the god of the MPT development group to
enable optimizationsby default. Some optimizatonsmay
degrade performance in certain cases and for tha reason
they are not enabled by default. Further detail of these
optimizations will be given here. It is our hope tha
many of these will be enabled by default in future releases
as they are improved to handle all peformance
degradaions These recently added non-default
optimizations are rank placement, multi-core optimized
collectives, optimized memcpy and disabling of portals
message matching.

Rank Placement

The default yod rank placement on dua-core XT
systems may not be optimal for many applications For

example, for a yod-launched 8 process (4 node MPI job
on dud-core nodes, the default placement would be:

Node 0 1 2 3

Rank 0&4 1&5 2&6 3&7

A new MPI environment variable has been
implemented that allows users to change this placement.
The MPICH_RANK_REORDER_METHOD
environment variable can be set to three different
placement schemes. Setting thevariableto "1" will cause
MPI ranks to be assigned according to SMP placement.
For example, usng the SMP method an 8 process (4
nodg MPI job on dud-core nodes, the rank placement
would be

Node 0 1 2 3

Rank 0&1 2&3 4&5 6&7

Setting MPICH_RANK_REORDER_METHOD to
"2" will cause ranksto be assigned according to a folded-
rank placement and has been known to hdp some
applications Indead of rank placement starting over on
the first nodewhen half of the MPI processes have been
placed, this option places the N/2 process onthelast node
going back to the initial node For example, usng the
folded-rank method an 8 process (4 nodg MPI job on
dud-core nodes, therank placement would be

Node 0 1 2 3

Rank 0&7 1&6 2&5 3&4

Findly, some applications may benefit from fully
specifying how ranks are placed and setting
MPICH_RANK_REORDER _METHOD to "3" will
endble cusom rank placement. The cugom rank
placement option will cause the MPI library to lodk in the
file caled MPICH_RANK_ORDER for placement
information. A comma separated list of ranks as well as
hyphenated syntax is suppoted and can be mixed. The
MPICH_RANK_ORDER file mug be readable by all
ranksin the current running directory. The order in which
theranksare listed in the file determines which ranks are
placed closest to each other. Thisis mog hdpful for dud-
core nodes. For example:

CUG 2007 Proceedings 2 of 6

Syntax Rank Placement

0-15 Places theranksin SMP-style order

150 Places ranks 15&14 on the first node
13&12 onthenext, etc.

05,1,4,23,6,7 | Placesranks0&5 onthefirst node 1&4
on the next, 2&3 togehe and 6&7
togehe.

Therank placement feature was made available in the
14.30and 1.5.08 XT releases. Thefollowing charts show
how SMP style placement improves peformance while
compaing the IMB/Pallas Benchmarks for PingPong,
Allreduce, Alltodl and Bcast. In the following charts
thetop(dak line) is the default and thelighter is with the
optimization enabled. All runswere doneusng 128pes.
The PingPongtest redlly is comparing on-nodevs. across
nodesince we are only usng the 2 pe case which with
SMP ordering, rank 0 and 1 are on the same node and
with default placement they are not.

SMP ordering Pallas - PingPong

1000 -
3 100 / , |
2 _ e DEFAULT
-E SMP-order
IS 10 + = —————————
=) / >

1 10 100 1000 10000 10000 1E+06

of bytes 0

SMPordering Pallas - Alreduce(128pe)

100000 +

10000 //
1000 r

P //

-

e

time in usec

l(D T T
10000 100000 1000000 10000000

#of bytes

For Allreduce SMP placement was 7% to 32% faster
abovel6K bytes.

SMP ordering Pallas - Alltoall(128pe)

10000000 -

///‘
[$} //0/
© 1000000 ——
12 -
S e
£ —
2 e
£ 100000 —
10000 T T 1
10000 100000 1000000 10000000
of bytes

For Alltodl SMP placement was 13% to 36% faster
above 16K hytes.

SMP ordering Pallas - Bcast(128pe)
100000
10000 /
(8]
2 1000 /
=] >
c
© 100 - */
£ AN
10
1 10 100 1000 10000 100000 100000 1E+07
of bytes 0

For Bcast SMP placement was 12% faster at 8 bytes and
45%faster at 1MB.

Multi-core Optimized Collectives

The XT MPICH2 suppots a framework for
implementing optimized collective fundions leveraging
infrastructure dready in place within the dandad
MPICH2 distribuion. The framework is structured to
take advantage of multi-core nodes: a nework based
component utilizes portals, while an orn-node component
can take adventage of any possible on-node
communication mechanism (shaed memory, for
example).

Currently in the XT MPICH2 running on catamount
compute nodes, portals is used both for intranode and
inter-nodecommunication.

At this time only two collective opeaations are
actudly defined in the framework: MPI_Allreduce and
MPI_Barrier. These optimizations can be enabled by
setting the MPI_COLL_OPT_ON environment variable.
The following chat shows the speed-up of
MPI_Allreduee usng the IMB/Pallas benchmarks. The

CUG 2007 Proceedings 3 of 6

range of speed-up was around 5% at 1IMB to 40% at 8
bytes over the default for MPI_Allreduce. MPI_Barrier
was about30%faster up to 256 pes than thedefault.

Allreduce multi-core optimization 256 pes

900 -
800 »
700 VA
600 /
500

400 /
300
200
100

time in usec

At E

T 1
1 1000 1000000
of bytes

Othe fundions either implemented interndly in the
MPICH2 library, or in externd libraries, can readily be
incorporated into the framework. This optimization was
introduced inthe1.4.32and 1.5.11 XT releases.

Optimized Memcpy

Setting the MPICH_FAST_MEMCPY environment
variable enables use of an optimized memcpy routine in
the XT MPICH2. This optimized memcpy routine
written in assembly for the XT architechture makes use of
such features as loop unrolling, nontempora memory
references and prefetching to provide supeaior memcpy
peformance. When compared to the default Catamount
memcpy peformance, the optimized memcpy is nearly
4X faster for 1 megabyte copies. As noted in the chart
bdow, the memcpy peformance varies greatly with the
size of thedaabeng copied.

Raw Memcpy Comparison
Percent Improvement using Optimized Memcpy over Default Memcpy

450.00% -

20% -

15%

10%

400.00%

350.00%

300.00%
250.00%

200.00%

150.00%
100.00%
50.00% -

0.00% -
-5000% * be o ® \/&u

o

>
S
W

o)
< S
RS

Transfer Size (bytes)

In MPICH, when the optimized memcpy is enabled,
itisused for al local memory copies in the point-to-point
and collective MPI opeations This indudes copying
loca daa out of the unexpected buffers into the user

buffers on the receive-side, copying user daa to internd
MPI buffers on the send-side and creating temporary
copies of data buffers for some collective opaations The
optimized memcpy is not currently used in the MPI /O
routines, or for derived daatypes.

Given the different chaacteristics of the memcpy
routines, induding cache effects, the effect of usng the
optimized memcpy in MPICH is not as straight forward
as the raw memcpy performance indicates. Even though
the optimized memcpy isfaster in raw performance, some
MPI collectives, as seen with the Palas benchmark suite,
show a peformance degradaion with certain message
sizes when usng the optimized memcpy.

Other message sizes show a subdantial performance
gan. For this reason, we have chosn not to enable the
optimized memcpy as the default, but to alow users to
select this optimized memcpy if thdr application
performance can ben€fit fromit.

Allreduce 128p
Percent Improvement using Optimized Memcpy over Default Memcpy

5%

0% -

Q" »a
v 57 o SV X R
5% - ’\/'5@\’,’9-1?&\9",1,

Message size (bytes)

For Allreduce the fast memcpy shows more than a 13%
performance improvement above 256K bytes. This
optimization was added to 1.4.46 and 1.5.30 X T releases.

Disabling of Portals MessageMatching

Setting the MPICH_PTL_MATCH_OFF
environment variable disables registration of receive
requests with portals. This option can significantly
improve peaformance for latency-sendtive applications
especially on dud-core nodes. When setting this variable,
receive requests (via MPI_Recv() and it's variants) are
never poged to the portalsmanaged queue, but ingead
are tracked and matched via an internd MPI queue
When the application pods a receive request, setting
MPICH_PTL_MATCH_OFF saves the cog of the portals
system call, as well as eliminating the portals lock tha is
hdd during tha portals call. When a message is received
viaportals, since noreceive requests are posted to portals,
all messages are copied to the unexpected message

CUG 2007 Proceedings 4 of 6

buffers. MPI pollsthe portals event quaues, and when the
message trander to the unexpected buffer is complete,
MPI copies the data to the user buffer specified in the
receive request. An extra copy is introducd is this pah,
but for small mesages (less than 4096 bytes) that time is
mimimal.

When messages become larger (4096 bytes - 128K
bytes), theextralocal copy can become significant, andin
some cases, disabling the portals receive matching causes
a performance degradaionin MPI messaging.

For very large messages sent via the rendezvous
protocol (greater than 128K bytes), MPI uses the portals
'GET" protocol. In either case, whether MPI or portalsis
performing the matching, no extra copy of the daa is
incurred, since portals only initially sends a message
header. Once this header is matched to a poged receive
(either via portals or MPI matching), then the GET is
invoked, and the daa is tranders directly into the user
specified buffer. Performance for these very large
message tranders usudly does not change if
MPICH_PTL_MATCH_OFF is set or nat.

Due to the naure of how portas peforms a GET,
subtie timing differences in the initiating of these
requests, especialy when performing bi-directiond large
data transfers on dud-core nodes, can play a significant
rolein theperformance. Certain sequencing of events can
lead to the seridization of bi-directiond traffic in Portals.
We have seen cases where setting
MPICH_PTL_MATCH_OFF can amog douwle bi-
directiond large message bandwidth, as well as cases
where this variable has little or no effect on bandwidth.
The chat bdow shows the improvement in PingRong
latency with small message Szes when
MPICH_PTL_MATCH_OFF is set and how it gets worse
for larger messages.

MPI Latency Comparison (on-node in usecs)
using MPICH_PTL_MATCH_OFF

T yayuguyn
CRNWANO NROORNWRNON®O

o) D o B ® o G o
»%&@@Q@m@u&q%@{o@

Message Size (bytes)

One could imagine a supeior peforming solution
would be to have MPI handle the message matching for
small messages, and portals handle the matching for
larger messages. However, this requires careful andysis,

as it can be difficult to preserve the MPI ordering
semantics in this scenario, especially with the posting of
ANY_SRC receives. The MPT team will belooking into
providing this fundiondity in the future. This
optimization was enabled in the 1.450 and 1.5.39 XT
releases.

4. MPT Functional Improvements

In addition to the previoudy mentioned performance
improvements several fundiond improvements have been
recently added. These indudean updaed intro_mpi man
page defaulté4 suppot, Pathscale and GNU 4.1.1
compiler suppot.

The intro_mpi man page has been updaed to contain
more information aboutthe environment variablesthat are
suppoted and ther default values. This man page should
be checked often to learn of XT specific optimizations

The PGl compiler suppots the Gi8O and QOr80
compiler options which modify the default integer and
real Fortran size to 8 bytes. Users who have exigting
codes tha require this can now use the Qdefault640
option which will automaticaly add the PGI command-
line optionsand pull in specia versions of the MPI and
SHMEM libraries.

When the Pathscale or GNU 4.1.1 modules are
loaded, corresponding MPI and SHMEM libraries will
automatically beloaded.

Some early XT3 users began using the GmpiccQ
Qnpif770and Anpif900commands Althoughthese are
available, they are nat officidly suppoted and may be
removed in the future. Users should use the GecOand
GtnGcommandswhich are fully suppoted and are needed
to fully bendfit from much of the recently added
fundiondity.

5. Future MPT Improvements

With the XT 2.0 release suppot for Compute Node
Linux(CNL) will be available. This will indude suppott
for MPl and SHMEM. These libraries will use GiprunO
to launch and indructions on how to launch can be
obtained from the aprun man page Another feature of
CNL is tha the default placement on CNL will be SMP
placement. Since CNL allows memory mapping a future
verson of the MPI library will suppot the ability to
communicate within a multi-core node usng shared
memory rather than calling the portals interface.

The XT MPI-IO implementation is based on the
ROMIO implementation from Argonne Nationd
Lab(ANL). Severd ROMIO optimizations are not
engbled by default for collective 1/0. These can be
enabled by usng the MPI_Info_st routine to set these
hints. For example:

CUG 2007 Proceedings 5 of 6

CALL MPI_Info_create(infoh, ierror)
CALL MPI_In fo_set(infoh, 'romio_cb_write',
‘enable’, ierror)

We are working on a mechanism to more easily enable
these hints usng environment variables.

The new faster memcpy mentioned earlier has been
limited to certain areas of the MPI library. Areastha are
not currently usng this fast memcpy are beng examined
to seeif they will aso benefit. TheseindudeMPI-10 and
derived daatypes. In addition, other uses of the faster
memcpy routinewithin the OS are also bang examined.

Another feature that is planned to be suppoted is
shared librarieson CNL.

6. Conclusion

Themany improvements to the MPT software and
undelying portals software stack have been shown to
improvetheMB/Pallas benchmarksin many cases. The
real test of these improvements are how they will perform
onrea applications Someinitial daafor rea
applicationslook promising when usngthese
optimizations TheMPT team is committed in
developing new optimizationsand new fundiondity to
make the MPT software both easy to use and highly
optimized.

About the Authors

Mark Pagd isthe manager of the MPT groupat Cray Inc.
and can bereached by email at pags@cray.com. Howard
Pritchard and Kim McMahon are key membes of the
MPT development team and continue to make many
improvements in the XT MPT software. Alex Hilleary
has been working on Portals since late 2004, with an
emphasis on the SeaStar firmware.

CUG 2007 Proceedings 6 of 6

